(1+i)z^2=-1+7i

Simple and best practice solution for (1+i)z^2=-1+7i equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1+i)z^2=-1+7i equation:


Simplifying
(1 + i) * z2 = -1 + 7i

Reorder the terms for easier multiplication:
z2(1 + i) = -1 + 7i
(1 * z2 + i * z2) = -1 + 7i

Reorder the terms:
(iz2 + 1z2) = -1 + 7i
(iz2 + 1z2) = -1 + 7i

Solving
iz2 + 1z2 = -1 + 7i

Solving for variable 'i'.

Move all terms containing i to the left, all other terms to the right.

Add '-7i' to each side of the equation.
iz2 + -7i + 1z2 = -1 + 7i + -7i

Reorder the terms:
-7i + iz2 + 1z2 = -1 + 7i + -7i

Combine like terms: 7i + -7i = 0
-7i + iz2 + 1z2 = -1 + 0
-7i + iz2 + 1z2 = -1

Add '-1z2' to each side of the equation.
-7i + iz2 + 1z2 + -1z2 = -1 + -1z2

Combine like terms: 1z2 + -1z2 = 0
-7i + iz2 + 0 = -1 + -1z2
-7i + iz2 = -1 + -1z2

Reorder the terms:
1 + -7i + iz2 + z2 = -1 + -1z2 + 1 + z2

Reorder the terms:
1 + -7i + iz2 + z2 = -1 + 1 + -1z2 + z2

Combine like terms: -1 + 1 = 0
1 + -7i + iz2 + z2 = 0 + -1z2 + z2
1 + -7i + iz2 + z2 = -1z2 + z2

Combine like terms: -1z2 + z2 = 0
1 + -7i + iz2 + z2 = 0

The solution to this equation could not be determined.

See similar equations:

| -3m+21-5(m-4)=9m-(7m-7)-5m+4 | | 9r^2-18=0 | | 4(w+5)-10=2(w+8) | | Cosx=9x | | 2(x+1)=7x-3 | | 0.5(a+6)=0.25a+5 | | 6k+9=8k | | Cos2x/2 | | 35x^2-9x=7x-5x^2 | | 4n^2+3n=1 | | 634x-35=467 | | -(x^2+12x+28)=8 | | (x^2+12x+28)=8 | | 9y^2+16-24y= | | 3e^3x=1 | | 184-y=23 | | 3(2n-1.2)=6(3n-4) | | 7a-(2-6b)= | | 21-6x=12-9x | | (x^2+11x+27)=3 | | 1/3-3p^6 | | 4t+2=3t+17 | | x=(3*85)-85-88 | | x=(3*85)+85+88 | | 40=180(x-2) | | 36=180(x-2) | | cosx=11x | | 32=180(x-2) | | X=1000+40x | | 20t+81=10t+121 | | 4z^4-3z^2-1=0 | | 67+3x+8y=d |

Equations solver categories